Progression in Calculation

Key Learning Intentions

(National Curriculum/EYFS Framework)

- Children should be able to count confidently, develop a deep understanding of the numbers to 10 , the relationships between them and the patterns within those numbers.
- In addition, it is important that the curriculum includes rich opportunities for children to develop their spatial reasoning skills across all areas of mathematics including shape, space and measures.
- ELG: Number Children at the expected level of development will:
- Have a deep understanding of number to 10 , including the composition of each number
- Subitise (recognise quantities without counting) up to 5
- Automatically recall (without reference to rhymes counting or other aids) number bonds up to 5 (including subtraction facts) and some number bonds to 10 , including double facts.

Part- part-whole model Conservation of number a number can be partitioned but the whole (total) remains the same.

Explore the structure of the numbers 6 and 7 as ' 5 and a bit' and connect this to finger patterns and the Hungarian number frame

One-to-one correspondence - match one number name to each item to be counted Cardinality - the last number in the count is the total size of the group
Stable order - say the number names in the correct order

Hungarian number frame subitise different arrangements, both unstructured and structured, including using the Hungarian number frame

Develop conceptual subitising skills including when using a rekenrek

Odd and Even - Even Tops and the Odd Blocks to match Numicon concrete manipulatives.

Subitise

Counting to 10 Comparing sets of objects Equal/ unequal Matching Whole Parts Partitioning/ combining Doubles/ halves One more than One less than
Pairs
Addition
Subtraction Number bonds to 5 Missing numbers Greater than, less than
Finding the
difference
Longer, shorter Full, empty, nearly full, nearly empty, Match, sort compare Measure, patterns Circle, triangle, square, rectangle, quadrilateral, sides, straight, corners, 2D 3D, mass, capacity length, height, time, sharing, grouping

subtraction facts within 20

- Add and subtract one-digit and two-digit numbers to 20 including zero
- Solve one-step problems that involve addition and subtraction, using concrete objects, pictorial
representations and simple missing number problems

Year 2

- Count in steps of 2,3 , and 5 from 0 , and in tens from any number, forward and

backward

- Recognise the place value
of each digit in a two-digit
number (tens, ones)
- Identify, represent and
estimate numbers using
different representations,
including the number line
- Compare and order numbers from 0 up to 100; use and = signs Read and write numbers to at least 100 in numerals and in words Use place value and number facts to solve problems
- Solve problems with addition and subtraction - Recall and use addition and subtraction facts to 20 fluently, and derive and use related facts up to 100
- Add and subtract numbers using concrete objects, pictorial representations, and mentally, including: a twodigit number and ones, a two-digit number and tens, two two-digit numbers adding three one-digit

Rekenreks are used to represent and use number bonds and to add and subtract to and within 10 and 20.

Hundred squares are used to support cardinality and ordinality. Counting in twos, fives and tens. Counting, reading, writing, ordering and comparing numbers to 100.

	2	3	4	5	6		0		
	12	13	24	15		17	28	19	20
	22	23	24	28	26	27		2	30
	32	31	14	3	36	37	30	39	40
	42	4	44	as	46	4	48	\%	50
	52	53	54	55	56	57	56	59	60
	62	67	64	65	66	67	${ }^{68}$	69	
	72	7	74	75	76	7	7	79	
	82	83	34	45	36	67	38	b9	
		93		95					

Base 10 is used to support place value understanding and the addition and subtraction of 2 two-digit numbers, a two-digit number and ones and a two-digit number and tens. Representation of Base 10 will be used pictorally (II .. = 22) and into the abstract (numerals - 22)

Number lines will be used to support understanding of ordinality, 1 more and 1 less, finding the difference and subtracting bridging 10.

Formal written methods of calculations will be recorded as number sentences:

$$
27=20+7
$$

$$
27-20=7
$$

$$
27-7=20
$$

$20+7=27 \quad 27=20+7 \quad 27-20=7 \quad 27-7=20 \quad 20+?=27 \quad 27-?=20$

$$
20+?=27
$$

$$
27-?=20
$$

\qquad is

$$
\ldots \text { needs }
$$

make \qquad
is equal to \qquad and \qquad and can be made from double \qquad

	- Show that addition of two numbers can be done in any order (commutative) and subtraction of one number from another cannot Recognise and use the inverse relationship between addition and subtraction and use this to check calculations and solve missing number problems		
KS1 Multiplication and Division	Year 1 - Solve one-step problems involving multiplication and division, by calculating the answer using concrete objects, pictorial representations and arrays with the support of the teacher. - Recognise, find and name a half as one of two equal parts of an object, shape or quantity Recognise, find and name a quarter as one of four equal parts of an object, shape or quantity Year 2 - Recall and use multiplication and division facts for the 2,5 and 10 multiplication tables, including recognising odd and even numbers - Calculate mathematical statements for multiplication and division within the multiplication tables and write them using the multiplication (\times), division (\div) and equals (=) signs - Show that multiplication of two numbers can be done in any order (commutative) and division of one number by	Concrete resources are used to show equal and unequal groups. Children also pictorially represent equal and unequal groups. Arrays and Numicon are used to develop the x sign and commutative law, support multiplicative and additive relationships and to develop unitising in twos, fives and tens. Number lines used to support repeated addition. Formal written methods of calculations will be recorded as number sentences: $\begin{aligned} & 6 \times 2=12 \\ & 12 \div 2=6 \\ & 6 \times ?=12 \\ & 12 \div ?=6 \end{aligned}$	Repeated Addition Factor \times factor $=$ Product/multiple Quotient (answer in a division calculation) Array, row, column Divide, divided by Lots of, groups of, multiply, multiplied by, times, repeated addition Double, halve Equal, unequal Odd, even Commutative Equal groups of Stem sentence Multiplication is ... Arrays can help me with...

Solve problems involving increasingly harder fractions to

 calculate quantities, and fractions to divide quantities, including non-unit fractions where the answer is a whole numberRecognise and write decimals equivalents of any number of tenths or hundredths

Recognise and write decimal equivalents to $1 / 4,1 / 2,3 / 4$
Round decimals with one decimal place to the nearest whole number

Compare numbers with the same number of decimal places up to 2 decimal places

Find the effect of dividing a one- or two-digit number by 10 and 100 , identifying the value of the digits in the answer as ones, tenths and hundredths

Use concrete and pictorial representations to calculate fractions of numbers e.g. $1 / 3$ of 15 is 5.

Formal representation of this through bar models.
16

| $\mathbf{2}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Fraction number lines to count, compare and order fractions.A tool to support adding and subtracting fractions with the same denominator.

Formal written method to calculate addition and subtraction of fractions.

$$
\frac{1}{7}+\frac{4}{7}=\frac{5}{7}
$$

$$
\frac{4}{5}-\frac{1}{5}=\frac{3}{5}
$$

Year 6

- Read, write, order and compare numbers up to 10000000 and determine the value of each digit
- Round any whole number to a required degree of accuracy
- Use negative numbers in context, and calculate intervals across zero
- Solve number and practical problems that involve all of the above.
- Solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why
- Solve problems involving addition, subtraction, multiplication and division
- Use estimation to check answers to calculations and determine, in the context of a problem, an appropriate degree of accuracy

of a number, and common factors of two numbers
- Know and use the vocabulary of prime numbers, prime factors and composite (non-prime) numbers
- Establish whether a number up to 100 is prime and recall prime numbers up to 19
- Multiply numbers up to 4 digits by a one- or two-digit number using a formal written method, including long multiplication for two-digit numbers
- Multiply and divide numbers mentally drawing upon known facts Divide numbers up to 4 digits by a one-digit number using the formal written method of short division and interpret remainders appropriately for the context
- Multiply and divide whole numbers and those involving decimals by 10,100 and 1000

Year 6

- Multiply multi-digit numbers up to 4 digits by a two-digit whole number using the formal written method of long multiplication
- Divide numbers up to 4 digits by a two-digit whole number using the formal written method of long division, and interpret remainders as whole number remainders, fractions, or by rounding, as appropriate for the context
- Divide numbers up to 4 digits by a two-digit number using the formal written method of short division where appropriate, interpreting remainders according to the context
- Perform mental calculations, including with mixed operations and large numbers identify common factors, common multiples and prime numbers
- Use their knowledge of the order of operations to carry out calculations involving the four operations

Multiplication using decimal places.

£23.67
X
$\begin{array}{r}\mathrm{E} \\ \hline £ 71.01 \\ \hline 122\end{array}$
Part-part-whole model:

Grid method for multiplication,

using partitioning.

x	300	40	5	
20	6000	800	100	6900
6	1800	240	30	2070
				8970

Place value grids to show that the decimal place doesn't move, the number moves across the grid.

Use partitioning to multiply 2,3 or 4 digit numbers by 1 digit numbers:

$$
\begin{aligned}
& \text { e.g: } 34 \times 7= \\
& 30 \times 7=210 \\
& 4 \times 7=28
\end{aligned}
$$

Short multiplication of 2, 3 and 4 digits by 1 digits.

Short multiplication of 2, 3 and 4 digits, combining partial products.

Long multiplication of 2, 3, 4 digits by 2 digits (multiplying tens first):
$16 \times 27=$?

$$
\frac{x_{10}^{27}}{\frac{270}{27}}+\frac{x^{27}}{\frac{162}{4}}=\frac{x_{16}^{27}}{\frac{162}{432}} \underset{\substack{\text { (xa) } \\(x \times 10)}}{ } \quad 16 \times 27=(10 \times 27)
$$

Long multiplication of 2, 3, 4 digits by 2 digits (multiplying ones first, explaining it's cumulative):

Factor \times factor $=$ product / multiple

Dividend
Divisor
Divisible
Quotient
Remainder
Prime numbers Prime factors
Composite numbers Multiples Factors Common factors Remainders
Rounding
Squared number Cubed number Integer Scaling

Stem Sentences: A prime number is only divisible by itself and 1.

The decimal point never moves, the number moves across the place value grid.

		$35 \times 7=238$ Use partitioning to multiply decimals by 1 digit numbers: $\begin{array}{r} \text { e.g: } 4.5 \times 9= \\ 4 \times 9=36 \\ 0.5 \times 9=4.5 \\ 4.5 \times 9=40.5 \end{array}$ Use times-tables facts up to $\mathbf{1 2 \times 1 2}$ $\begin{aligned} 4 \times 6 & =24 \\ 40 \times 6 & =240 \\ 40 \times 60 & =2,400 \end{aligned}$ Multiple $4 \times 9=36$ Factor $4 \times 9=36$	Short division of 3 and 4 digit numbers by 1 digit numbers. dividend + divisor $=$ quotient quotient divisor dividend Long division of 3 $6 \longdiv { 2 5 ^ { 2 } 7 }$ and 4 digit numbers by 2 digit numbers. Scaling initially used to introduce long division. Progress onto long division. $\begin{array}{rlr} & 2 & \mathrm{r} 25 \\ 3 0 \longdiv { 8 } & 5 & \\ \frac{6}{2} & 0 \\ \hline 2 & 5 \end{array}$	Multiplication is cumulative. It can be done either way.

Year 5:

Use common factors to simplify fractions; use common multiples to express fractions in the same denomination

Compare and order fractions, including fractions >1

Add and subtract fractions with different denominations and mixed numbers, using the concept of equivalent fractions.

Multiply simple pairs of proper fractions, writing the answer in its simplest form (e.g $1 / 4 \times 1 / 2=1 / 8$)

Divide proper fractions by whole numbers (e.g $\frac{1 / 3}{}$ divided by $2=$ 1/6)

Identify the value of each digit in numbers given to 3 decimal places.

Multiply and divide numbers by 10, 100 and 1000 giving answers up to 3 decimal places.

Multiply one-digit numbers with up to 2 decimal places by whole numbers.

Use written division methods in cases where the answer has up to 2 decimal places.

Solve problems which require answers to be rounded to specified degrees of accuracy.

Year 6:

Identify, name and write equivalent fractions of a given fraction, represented visually, including tenths and hundredths

Recognise mixed numbers and improper fractions and convert one form to the other and write mathematical statements >1 as a mixed number (e.g $2 / 5+4 / 5=6 / 5=11 / 5$)

Compare and order fractions whose denominators are all multiples of the same number

Add and subtract fractions with the same denominator and denominators that are multiples of the same number

Finding equivalent fractions, using common multiples, and using them for addition and subtraction:

$$
\begin{aligned}
& 3 / 4-2 / 3 \\
& 9 / 12-8 / 12
\end{aligned}
$$

$$
\frac{1}{5}=\frac{3}{15}
$$

Writing fractions as improper fractions and mixed numbers:

How many quarters of pizza have been shaded?
We can say and write this as $5 / 4$, an improper fraction, or as $1^{1} / 4$ pizzas, a mixed number.

Representing fractions of a number through bar models

1. $\frac{1}{3}$ of 42 2. $\frac{2}{3}$ of 42
\square
Comparing fractions and decimals.
 supported by materials and diagrams

Read and write decimal numbers as fractions (e.g $0.71=71 / 100$)
Recognise and use thousandths and relate them to tenths, hundredths and decimal equivalent

Round decimals with 2 decimal places to the nearest whole number and to 1 decimal place

Read, write, order and compare numbers with up to 3 decimal places

Solve problems involving number up to 3 decimal places

Multiplying fractions by a whole number:

$$
\frac{4}{5} \times \frac{2}{3}=\frac{8}{15} \quad \frac{2}{3} \times \frac{4}{5}=\frac{8}{15}
$$

Dividing fractions by a whole number:
$\frac{1}{3} \div 4=\frac{1}{12}$
$\frac{1}{3} \times \frac{1}{4}=\frac{1}{12}$

Multiply and divide decimals by $\mathbf{1 0 , 1 0 0 , 1 0 0 0 :}$
$0.723 \times 10=7.23$
$0.723 \times 100=72.3$
$0.723 \times 1000=723$

Maths Progression Vocabulary Word Clouds

EYFS

LKS2

KS1

UKS2

